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ABSTRACT 

Background. Environmental optimizations in kidney care have been analysed as part of the European Union co-funded 
KitNewCare project. 
Methods. Life Cycle Assessments ( LCA) using Ecoinvent database and OpenLCA software quantified optimizing resource 
use ( e.g. dialysis machines, reducing flow rates, incremental dialysis) , energy-saving measures ( e.g. solar energy, efficient 
lighting) and travel reduction ( e.g. home dialysis, telemedicine) . Efforts in waste management involve transitioning 
clinical waste to domestic waste streams, recycling and pyrolysis. Water-saving practices include reclaiming water for 
non-potable uses and efficient treatment systems. 
Results. LCA quantified these interventions, revealing significant environmental particularly in reducing travel and 
resource use. Travel optimizations yielded the most significant CO2 equivalent savings, while incremental dialysis also 
conserved water and reduced greenhouse gas emissions. 
Conclusion. The study underlines the importance of prioritizing impactful interventions to minimize the environmental 
footprint of chronic kidney disease care while maintaining clinical efficacy. Challenges include adapting strategies to 
local contexts, ensuring economic feasibility and integrating renewable energy sources based on regional energy mixes. 
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NTRODUCTION 

idney disease affects approximately 850 million people world- 
ide [1 ], with chronic kidney disease ( CKD) recognized as a lead- 

ng contributor to global morbidity and mortality. By 2050 CKD 

s projected to become one of the top 10 causes of death [2 ].
KD accelerates biological aging and increases the risk of pre- 
ature death. However, some patients survive to progress to kid- 
ey failure, a condition which would potentially require kidney 
eplacement therapy ( KRT) by dialysis ( usually haemodialysis) 
r kidney transplantation. Countries that can afford to offer KRT 
o their population dedicate 2%–4% of the healthcare budget to 
reat just 0.1%–0.2% of the population with kidney failure [3 ]. As 
he global population ages, the prevalence of CKD will continue 
o rise, and with it, the environmental impact of KRT will in- 
rease [4 ], as more countries provide this level of care. At the 
ame time, climate change poses a growing threat to human 
ealth driving urgent efforts to reduce greenhouse gas ( GHG) 
missions [5 ]. The European Commission has introduced a se- 
ies of proposals aimed at aligning the European Union ( EU) ’s 
limate, energy, transport and taxation policies with the goal 
f cutting net GHG emissions by at least 55% by 2030, com- 
ared with 1990 levels [6 ]. Given the resource-intensive nature 
f kidney care—requiring substantial energy, water and medical 
upplies—the nephrology community must take proactive steps 
o align with these sustainability goals. 

Recognizing this need, the Centre for Sustainable Healthcare 
 CSH) as part of their Green Nephrology Programme ( started in 
009) are exploring how kidney care could reduce its environ- 
ental footprint while maintaining high-quality patient care.
he CSH applies the Triple Bottom Line framework, which eval- 
ates healthcare sustainability across three key dimensions [7 ]: 

 i) People ( social impact) —ensuring quality patient care, equi- 
table access to services, employee well-being and commu- 
nity health outcomes.

 ii) Planet ( environmental impact) —implementing sustainable 
practices to reduce waste, improve energy efficiency and 
minimize the carbon footprint of kidney care.

 iii) Profit ( economic sustainability) —enhancing cost- 
effectiveness, ensuring the financial viability of kidney 
care services and maintaining affordability for patients.
The optimizations evaluated were diverse, ranging from 

processes to minimise resource use ( medical supplies,
energy) , to innovative waste disposal strategies.

ince then, additional sustainable initiatives have been devel- 
ped. Some of the interventions range from a reduction in re- 
ource use ( procurement, energy, waste production, travel) to 
 focus on education, behavioural change or comparison of re- 
ource use across sites. These interventions had been reviewed 
nside the KitNewCare project, an EU co-funded initiative fo- 
used on improving the environmental sustainability of kidney 
ealthcare. The project positions kidney care—known for its 
igh disease burden and substantial resource use—as a model 
o drive systemic changes towards sustainability prioritizing 
mpactful interventions to minimize the environmental foot- 
rint of CKD care while maintaining clinical efficacy and patient 
afety [8 ]. 

Evaluating the environmental impact of healthcare products 
nd processes requires a structured approach. Attributional Life 
ycle Assessment ( LCA) is widely used method that examines 
he direct environmental burdens of a product, process or sys- 
em throughout its life cycle on the existing system and the di- 
ect contributions to environmental burdens. It provides a static 
napshot of emissions and resource use, typically using average 
ata rather than predicting future changes or indirect market 
ffects [9 ]. 

In a recently published textbook on a different aspect of 
ealthcare, we highlight that an ideal healthcare process or 
roduct should prioritize patient safety while minimizing re- 
iance on fossil fuels. Wherever possible, the products should be 
ourced from renewable materials while allowing for repeated 
euse or local processing. Additionally, they should be pack- 
ged sustainably or minimally, biodegrading into harmless nat- 
ral components. Where feasible, the product should be easy to 
lean and reuse, designed for straightforward recycling, and ei- 
her transported via clean energy vehicles or produced directly 
t the point of care. Ethical manufacturing practices and the use 
f renewable energy should also be fundamental to its produc- 
ion [10 ]. 

Water use is an environmental impact measure in LCA, simi- 
ar to how carbon footprint is measured. The LCA analysis refers 
o the total volume of freshwater consumed directly and indi- 
ectly during the production, use and disposal of the specified 
tems or activities. This includes water extracted for raw mate- 
ials, manufacturing processes and wastewater treatment [11 ]. 

This paper was written to calculate and compare a diverse 
ange of interventions in terms of the triple bottom line specifi- 
ally looking at changes in carbon and water footprint using at- 
ributional LCA. The social impact is covered in the second paper 
n this series. 

ETHODOLOGY 

s part of the KitNewCare project, a rapid review of sustain- 
bility interventions in kidney care was conducted. The re- 
iewed interventions were categorized into procurement and re- 
ource optimization, energy reduction, travel reduction, water 
onservation and waste management. The environmental im- 
act of these interventions was quantified using LCA, assessing 
hanges in carbon and water footprints to provide a standard- 
zed evaluation of their sustainability benefits. 

rocurement/reducing demand for procured products 

esource optimizations included managing the dialysis ma- 
hine, adjusting the dialysis fluid flow ( Qd) to patient body size 
 K16) [12 ], saving dialysate by automating control of flow rates 
12 ] or increasing the treatment time/blood flow rate ( rather than 
ialysate flow rate) [13 ] using incremental haemodialysis [14 ],
owering the dialysis fluid temperature to manage intradialytic 
ypotension [15 ], online priming to reduce need for saline bags 
16 ], using the dialysate autoflow facility on the Fresenius 5008 
achine [17 ], and reducing the number of disinfections of the 
ialysis machines to once in 24 h in a staggered manner and re-
lacing the others with a rinsing process [18 ]. 
Centres also focused on making smaller changes, such as 

sking people to bring their own blankets [19 ], reducing food 
aste by asking patients to pre-order their preferred sandwiches 

16 ] and reducing paper use through paperless haemodialysis 
lood result reporting [20 ]. 

nergy 

nergy reduction initiatives included heat exchangers [21 ], light- 
ng upgrades [22 ], using solar power to assist with haemodialysis 
23 ] and automatic IT shutdown [24 ].
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ravel reduction 

ravel reduction initiatives included developing a renal database 
o allow remote monitoring of patients, increasing home 
aemodialysis [25 , 26 ], managing patients in primary care to re-
uce travel distance [27 ], using remote monitoring for transplan-
ation follow-up [28 ] and working [29 ]. The use of central delivery
f acid [30 ] and/or more concentrated acid dialysis bags ( diluted
n site) also reduce transportation and therefore associated GHG 

missions [31 ]. 

ater reduction 

any renal centres used systems to reclaim reverse osmosis wa-
er [32 –34 ] or upgraded their water treatment system [35 ]. Some
ocused on optimizing the size and location of the reverse os-
osis plant [36 ]. 

aste management 

aste was segregated in various establishments. Domestic 
aste was segregated into black bags rather than all waste being
iscarded in clinical waste bags, as was the previous practice,
nd diverting bicarbonate containers from the clinical waste 
tream to domestic waste. Centres opted for reduction of Griff
ins [37 ], other centres introduced baling and recycling for their
lastic and cardboard waste [38 , 39 ], or removing their black
ag waste attempted to redirect their non-contaminated dial- 
sis waste from clinical to domestic waste. 

To ensure an LCA is reproducible, it is essential to define
 precise functional unit ( a well-specified comparison unit) ,
learly state information sources, outline necessary assump- 
ions, address ethical and data protection considerations, and 
stablish a methodology for deriving environmental impacts 
rom the collected data. Detailed descriptions of these elements 
re provided in the following subheadings. 

unctional unit 

he comparative functional unit represents a specific innovative 
ntervention applied over 1 year, assuming three haemodialysis 
essions per week allocated to one patient. In contrast, the stan-
ard functional unit is the same but corresponds to the conven-
ional care approach. 

ources of information 

o ensure consistency and comparability, the LCA relied on data
ourced from publicly available online resources or Spanish clin- 
cal dialysis centres, as well as information gathered during the
itNewCare study [8 ]. 

verall assumptions 

ssumptions can be seen in Table 1 . To provide a more con-
ise analysis, only a few indices were considered, such as carbon
quivalent emissions ( CO2e using Ecoinvent EF v3.1) and water 
eprivation ( Ecoinvent EF v3.1) . The decision on environmental 
ligns with KitNewCare methodology and was informed by ad- 
ice from the KitNewCare stakeholder group and our external 
takeholder group. 

To ensure comparability, the functional unit for each process 
as that used for dialysis three times a week for 1 year. 
Despite most of these interventions happening in the UK,

or these analyses to fit with European funding, and for consis-
ency, we modelled the interventions as if they were happening
n Spain. Spanish data ( e.g. electricity use) were used where pos-
ible, to ensure that consistent comparisons could be made. The
nly exception was patient travel which used Irish published
ravel data relating to kidney care as Spanish data was unavail-
ble [40 ]. 

The innovations are summarized in Table 1 ; more detail can
e found the flow diagrams seen in Appendix 1 as well as the
nputs for the processes in Appendix 2 ( Open LCA) . 

thics and data protection 

o personal or identifiable information was gathered from any
rganization or individual to calculate these footprints. 

ata collection and analysis 

he LCA methodology was applied in line with International Or-
anisation for Standardisation standards 14 040 and European
nion Product Environmental Footprint ( PEF) guidance [49 , 50 ]. 
In total, two separate impact environmental categories ( CO2e 

missions, water deprivation) were examined in this study and
he Life Cycle Impact Assessment ( LCIA) methods were based 
n PEF guidance. All inputs for each functional/comparative unit
an be found in Appendix 2 . 

The software OpenLCA v2.11was used alongside the refer-
nce database Ecoinvent v3.7.1 for the LCIA. 

ESULTS 

mall numbers less than a whole number have been rounded
o ‘0’—the actual number can be seen in our data set here [51 ].
ontributions analysis can be seen in Appendix 4 . 
The results highlight the extent to which different interven-

ions influence carbon emissions ( CO2e) and water deprivation. 

esource savings and procurement ( Table 2 ) 

he procurement-related interventions demonstrated a varied 
mpact on environmental sustainability. The most significant 
eductions in water deprivation were observed in eliminat-
ng cotton blankets ( 116 kg CO2 , 899 m³ water) . Incremental
aemodialysis resulted in the highest environmental saving 
ith an additional 316 kg of CO2 emissions saved along with
37 m³ of water deprivation. Surprisingly, pre-ordering sand- 
iches saved 53 kg CO2 and 90 m3 of water. Smaller but notable

mprovements were seen with simple changes, such as going
aperless ( saving 1 kg CO2 , 0 m³ water) and eliminating saline
ags ( saving 3 kg CO2 , 2 m³ water) . 

able 2: The carbon and water footprint of saving in resources. 

tem CO2e ( kg) 
Water 

deprivation ( m3 ) 

rocurement 
Using a 3 mL syringe 4 2 
Going paperless 1 0 
Pre-ordering sandwiches 53 90 
Using beef vs vegetarian lasagne 19 23 
Incremental haemodialysis 316 137 
Not using the saline bag 3 2 
Not offering cotton blankets 116 899 

a A negative score implies a worsening rather than an improvement. 
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nergy savings ( Table 3 ) 

nergy conservation strategies showed varied potential in re- 
ucing environmental footprints. The greatest impact was 
chieved using solar energy, which saved 646 kg of CO2 emis- 
ions and 52 m³ of water. Other interventions, such as heat 
xchange ( savings of 31 kg CO2 , 9 m³ water) and automatic IT 
hutdown ( saving 8 kg CO2 , 2 m³water) , contributed to moderate 
eductions, while switching lightbulbs had little environmental 
ffect. 

able 3: The carbon and water footprint of saving in energy. 

nergy 

tem CO2e ( kg) 
Water 

deprivation ( m3 ) 

utomatic IT shutdown 8 2 
eat exchange 31 9 
hanging lightbulbs Neg Neg 
sing solar energy 646 52 

educing patient travel ( Table 4 ) 

ptimizing patient travel demonstrated a significant opportu- 
ity to reduce emissions and water usage. A 10% reduction in 
ravel resulted in 282 kg of CO2 savings and 34 m³ of water.
ore substantial savings were achieved with greater reductions 

n travel, with a 50% reduction yielding 1411 kg CO2 and 170 m³
ater saved. 

able 4: The environmental and water footprint of saving in patient 
ravel. 

ravel 
tem CO2e ( kg) Water use ( m3 ) 

ravel optimizations 10% 175 32 
ravel optimizations 50% 710 129 

aste reduction strategies ( Table 5 ) 

aste management practices also played a role in reducing en- 
ironmental impact. Pyrolysis of waste resulted in a 735 kg re- 
uction in CO2 emissions and 71 m³ of water savings. 

able 5: The carbon and water footprint of saving in waste. 

aste item CO2e ( kg) 
Water 

deprivation ( m3 ) 

ptimising waste ( optimal waste 
.g. pyrolysis of medical waste) 

735 71 

ater conservation ( Table 6 ) 

irect efforts to reduce water usage contributed modest but 
eaningful reductions in environmental impact. Water-saving 

nterventions resulted in a total reduction of 16 kg CO2 and 
9 m³ of water saved. 
able 6: The carbon and water footprint of saving in water. 

CO2e ( kg) 
Water 

deprivation ( m3 ) 

aving water 16 19 

ISCUSSION 

nitiatives like KitNewCare project aim to address the sustain- 
bility of kidney care, serving as a model for reducing the car- 
on footprint of healthcare. It is important to weigh the impact 
f optimizations against each other to inform sustainability ef- 
orts and help clinical sites to prioritize their implementation.
umerous innovations are occurring in this field, their impacts 
ary across the two chosen measurements for environmental 
ootprint ( CO2e, water) The social impact of these interventions 
ill be discussed in a later paper. 
LCA involve various assumptions for much of the resource 

se. To ensure consistency, activity data from a renal centre in 
pain were used whenever possible. However, travel patterns 
ay differ in urban areas, especially where individuals have 
etter access to public transport. Energy savings can also vary 
ignificantly. Where the energy mix of an EU country is high in
oal and other fossil fuels, the energy savings stated here could 
e substantially higher. Conversely, in countries who already 
ave a high proportion of renewable energy, installing solar 
anels may result in lower GHG emissions savings associated 
ith electricity use. 
For reference regarding the figures below, the average carbon 

ootprint of a person in Europe is 5.66 tons, or 5660 kg [52 ], an av-
rage month’s carbon footprint is around 471 kg; and the carbon 
ootprint of driving 100 km in a large car is around 25 kg [53 ]. An
verage person uses 0.2–0.4 m3 every day [54 ]. 

Patient travel-related interventions demonstrated the high- 
st savings in GHG emissions, ranging from 175 kg ( 10% using 
inibus instead of car) to 710 kg ( 50% using minibus instead 
f car) . These GHG emissions primarily stem from the mainte- 
ance and distance the car travels, rather than the car’s produc- 
ion. We did not measure changes in staff travel although we 
ssume that similar ( proportional) changes will happen with a 
taff travel intervention. 

Water savings of between 32 and 129 m3 also resulted from 

ignificant changes in travel. However, unlike CO2e emissions,
his water consumption is primarily associated with the produc- 
ion of the car’s components, rather than the distance travelled 
r maintenance. 
Ecoinvent allocates 8 g of car production for every km that 

he car is driven [8 ]. It could be argued that this allocation is only
ccurate for an ‘average car’ that drives a specific number of kilo-
etres before being redundant. To reduce the amount of carbon 
missions associated with car travel, it would be necessary to 
educe car ownership. 

Within this study, we calculated a 10% change and 50% 

hange in patients using a shared minibus instead of car. These 
hoices of a 10% and 50% reduction were arbitrary and solely 
elated to plausible reductions in patient travel. Moving to a 
reen energy powered public transport only system, e.g. through 
overnment policy, etc., might be feasible. 

Travel can be reduced through various means, including 
ncreased use of public transportation, and the provision of 
ome-based care. Home-based dialysis could be one solution.
t may also be possible to allocate the patient to a closer facility,
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educing travel distance. By increasing the availability of home 
ialysis, implementing telemedicine where clinically appropri- 
te or coordinating ambulance services, centres have success- 
ully reduced the number of trips patients need to make. Reduc-
ng patient travel in this respect not only decreases carbon emis-
ions but also enhances patient convenience and access to care.

Another significant area of focus is water management.
mproving the efficiency of dialysate concentrate delivery 
ystems can contribute to overall sustainability in dialysis care.
awierucha et al . highlight that liquid dialysate concentrates,
ommonly delivered in 10-L canisters, have a higher envi- 
onmental impact due to increased transportation emissions 
nd packaging waste [55 ]. In contrast, powder and semi-dry
oncentrates significantly reduce carbon emissions, storage 
pace requirements and transport-related environmental bur- 
ens. The study also emphasizes the benefits of in-centre 
ixing systems, such as EcoMix ( B. Braun) and Granumix Plus 

 Fresenius Medical Care) , which enable the on-site production 
f dialysate. These systems lower packaging waste, minimize 
ransport emissions and enhance cost-efficiency, while also 
educing the risk of preparation errors. Shifting towards these 
ore sustainable options could be a key strategy in reducing

he environmental footprint of dialysis centres. 
We also know from a recent Spanish paper that both water

nd energy consumption were lower per patient in larger cen-
res compared with smaller ones, and in those operating daily
ersus those with a thrice-weekly schedule [56 ]. These factors
ad a notable impact on water usage. Despite conducting fewer
ialysis sessions annually, smaller centres and those with a 
hrice-weekly schedule exhibited proportionally higher water 
nd energy consumption per session. This is because the water
reatment system consumes energy and water during start-up,
riming, rinsing and disinfection processes, irrespective of 
he number of sessions conducted. Dialysis requires large 
olumes of water, and many centres have developed systems 
o reclaim and reuse water, either within the dialysis process
tself or for non-potable uses such as via hospital greywater 
ystems. These innovations can reduce the environmental 
urden associated with water use and lower operating costs for
ealthcare facilities [57 ]. Interestingly, water management ( tap 
ater production and associated sewerage) also has relatively 
igh CO2e emissions, primarily due to the construction and 
aintenance of water production and sewerage plants. Sus- 

ainability innovators should consider the strong correlation 
etween water use and carbon emissions [58 ]. 

Waste management strategies have also been explored to 
itigate the environmental impact of dialysis. Waste manage- 
ent in renal centres can be expensive with the incineration
osts of healthcare waste in the UK at £337 per ton ( in 2018) ,
hich equates to £437 ( today) when adjusted for inflation us- 

ng the Bank of England calculator, yet many centres do little to
anage their waste appropriately [59 ]. Changes in how waste

s categorized, such as diverting certain materials from clini- 
al waste streams to domestic waste, have reduced the envi-
onmental load. In addition, there have been attempts to re-
uce waste at the source by rethinking supply chain logistics
nd the materials used in dialysis care, such as switching from
ingle-use to reusable or recyclable materials where possible.
ome centres have moved away from the traditional practice 
f sending all dialysis waste to be incinerated, instead focus-
ng on segregating recyclable materials and using pyrolysis or 
ther advanced waste treatment technologies to convert clini- 
al to domestic waste [60 ]. Despite offering significant planetary
nd health benefits, this technology is not widely implemented 
n Europe. 
The impact of changes in resource use varied from negligi-
le ( avoiding saline bags e.g. close to 0 kg CO2e, going paperless)
o moderate ( altering meat types, pre-ordering sandwiches to 
inimize waste) to significant ( not offering blankets, e.g., 116 kg
O2e, and implementing incremental dialysis) . 
Cotton blankets, like most textiles, are well known for their

igh environmental footprints [61 ] with textiles worldwide ac-
ounting for approximately 20% of global water production. 

The current paradigm is to start and continue thrice weekly
aemodialysis once kidney replacement therapy is deemed nec-
ssary. However, when dialysis is first started, there is often
esidual kidney function that contributes positively to patients’
ellbeing but is progressively lost over time. The blood pressure
hanges that occur with haemodialysis can accelerate the loss
f residual kidney function; thus, it has been suggested that dial-
sis can be initiated incrementally, starting with once or twice
eekly haemodialysis, increasing as needed to achieve adequate
learance. Incremental dialysis showed a significant reduction 
n CO2e, water use and frequency of forced labour. Likewise, ob-
ervational studies suggest that this approach is safe and may
etter preserve kidney function, but clinical trials are ongoing
62 –64 ]. 

GHG emission results associated with energy use revealed
inimal savings from altering lighting within the nephrology or-
anization. Automatic IT shutdown and heat exchange yielded
ome environmental benefits. 

Another saving, albeit modest, was made using heat ex-
hangers. Since dialysis fluid interacts with blood in the ex-
racorporeal circuit, it must be heated to a temperature close
o body temperature. Conventional systems use energy for this
urpose. Heat exchangers utilize the residual heat in drained
ialysate to pre-heat fresh fluid, thereby reducing the energy re-
uired to heat fluid to body temperature. It was estimated that
his may reduce energy consumption for heating fluid up to 17%
65 ]. Savings of 31 kg CO2 emissions and 9 m3 were saved using
hese techniques per patient treatment per year. 

The main GHG emissions savings associated with energy use
ere achieved by installing solar panels to meet all the energy
eeds of the unit. Installing solar energy is cost-effective and of-
ers a straightforward way for some nephrology units to reduce
heir environmental footprint. However readers should also con-
ider their country’s energy mix before making this decision. If
 country is moving towards a low carbon energy mix, the level
f reduction in CO2e will not be as high. 
Transitioning to vegetarian meals can substantially reduce 

he environmental footprint of healthcare facilities. Meat pro-
uction, particularly beef, is a significant contributor to environ-
ental deterioration. Livestock production systems contribute 
ignificantly to environmental impact globally, with meat con-
umption projected to increase alongside the population. By
ubstituting meat based meals with plant based alternatives,
ealthcare facilities can achieve notable reductions in carbon
missions, estimated to reduce the carbon footprint of a meal
y up to 50% [66 ]. 

ONCLUSIONS 

his study highlights the most effective strategies for reducing
he environmental impact of kidney care. Among procurement-
elated interventions, incremental haemodialysis had the great- 
st impact, significantly reducing both CO2 emissions and water
se. Eliminating cotton blankets and pre-ordering meals also
ed to substantial savings. In energy conservation, solar power
as the most effective intervention, while reducing patient
ravel—even by 10%—demonstrated a major opportunity for 
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nvironmental benefit. Waste reduction and water conservation 
trategies contributed to smaller but meaningful improvements.
he KitNewCare study provides data-driven insights to help 
ustainability programs prioritize high-impact interventions. As 
KD prevalence rises, ongoing innovation and policy changes 
ill be key to reducing the environmental footprint of kidney 
are. By focusing on the most effective solutions, healthcare 
ystems can integrate sustainability without compromising 
atient care. 

UPPLEMENTARY DATA 

upplementary data are available at Clinical Kidney Journal online .
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Waste optimization 

Beef vs vegetarian lasagne 

Pre-ordering sandwiches 
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Changing lightbulbs 

Travel optimizations 

Not offering linen blanket 
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Solar assisted haemodialysis 

Three mL versus 10 mL syringe 

ppendix 2: Open lca inputs and outputs 

uane B, Larkin J, Fehintola A et al. Life Cycle Assessment 
ataset for Kidney Care Environmental Optimisations within 
aemodialysis [Data set]. 2024. Brett Duane. Available at: https:
/doi.org/10.5281/zenodo.14268014. 

ppendix 3: Information for incremental 
aemodialysis calculations 

 comparison was made from standard 3 × week to 1 × or 2 ×
eek incremental schedule. 
Scenario 1 refers to 51.3 weeks in 1 × then moved 39 weeks to 

 ×. 
Scenario 2 considers that 33% of patients already start with 

 ×. 
egime 
Monthly 
sessions Sessions 

Water 
consumed 

( L) 

Energy 
consumed 

( kWh) 

Waste 
generation

( kg) 
( modena 

waste mix)

X 13 272 108 888 952.77 544.44 
X 9 188 75 384 659.61 376.92 
X 5 105 41 880 366.45 209.4 
cenario 1 152 60 800 532 304 
cenario 2 195 78 000 682.5 390 
Difference = 43 = 17 200 = 150.5 = 86 

Estimated 
saving: 
From 3 × to 1 × 62% 

From 3 × to 2 × 31% 

Scenario 1 44% 

Scenario 2 28% 

https://doi.org/10.5281/zenodo.14268014
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ialyzed 1 year 3 ×/week for 52 weeks) 
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Automatic IT shutdown 
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igure 3: CO2 e from a 3 mL vs 10 mL syringe. 

Changing lightbulb 
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Pre-ordering sandwiches 
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igure 5: CO2 e from saving a sandwich. 
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igure 6: Water use from saving a sandwich. 
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Using beef versus vegetarian lasagne 
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igure 7: CO2 e from beef vs vegetarian lasagne. 
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Going paperless 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Paper

C
o

e
 (

k
g

)
2

  electricity

  hard coal mine operation

  waste graphical paper

  transport, pipeline

  natural gas
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Using solar energy 
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igure 11: CO2 e from using solar energy. 

Not using the saline bag 
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igure 12: CO2 e from saving the saline bag. 
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Not offering linen blanket 
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Heat exchange 
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igure 16: CO2 e from travel optimizations. 
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Waste 
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igure 18: CO2 e from waste. 
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igure 19: Water use from waste. 
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Saving water 
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igure 20: CO2 e from saving water. 
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Incremental haemodialysis 
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igure 22: CO2 e from incremental haemodialysis. 
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